Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575714

RESUMO

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

2.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473316

RESUMO

Females with PTEN Hamartoma Tumor Syndrome (PHTS) have breast cancer risks up to 76%. This study assessed associations between breast cancer and lifestyle in European female adult PHTS patients. Data were collected via patient questionnaires (July 2020-March 2023) and genetic diagnoses from medical files. Associations between lifestyle and breast cancer were calculated using logistic regression corrected for age. Index patients with breast cancer before PHTS diagnosis (breast cancer index) were excluded for ascertainment bias correction. In total, 125 patients were included who completed the questionnaire at a mean age of 44 years (SD = 13). This included 21 breast cancer indexes (17%) and 39 females who developed breast cancer at 43 years (SD = 9). Breast cancer patients performed about 1.1 times less often 0-1 times/week physical activity than ≥2 times (ORtotal-adj = 0.9 (95%CI 0.3-2.6); consumed daily about 1.2-1.8 times more often ≥1 than 0-1 glasses of alcohol (ORtotal-adj = 1.2 (95%CI 0.4-4.0); ORnon-breastcancer-index-adj = 1.8 (95%CI 0.4-6.9); were about 1.04-1.3 times more often smokers than non-smokers (ORtotal-adj = 1.04 (95%CI 0.4-2.8); ORnon-breastcancer-index-adj = 1.3 (95%CI 0.4-4.2)); and overweight or obesity (72%) was about 1.02-1.3 times less common (ORtotal-adj = 0.98 (95%CI 0.4-2.6); ORnon-breastcancer-index-adj = 0.8 (95%CI 0.3-2.7)). Similar associations between lifestyle and breast cancer are suggested for PHTS and the general population. Despite not being statistically significant, results are clinically relevant and suggest that awareness of the effects of lifestyle on patients' breast cancer risk is important.

3.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321133

RESUMO

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Assuntos
COVID-19 , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , SARS-CoV-2 , Genótipo
4.
HLA ; 103(1): e15251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850268

RESUMO

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Assuntos
COVID-19 , Cadeias beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genótipo , Autoanticorpos/genética
7.
Children (Basel) ; 10(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37761403

RESUMO

Pathogenic loss-of-function variants in the IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause intellectual disability with Rett syndrome (RTT)-like features. The aim of this study was to obtain systematic information on the natural history and extra-central nervous system (CNS) manifestations for the Italian IQSEC2 population (>90%) by using structured family interviews and semi-quantitative questionnaires. IQSEC2 encephalopathy prevalence estimate was 7.0 to 7.9 × 10-7. Criteria for typical RTT were met in 42.1% of the cases, although psychomotor regression was occasionally evidenced. Genetic diagnosis was occasionally achieved in infancy despite a clinical onset before the first 24 months of life. High severity in both the CNS and extra-CNS manifestations for the IQSEC2 patients was documented and related to a consistently adverse quality of life. Neurodevelopmental delay was diagnosed before the onset of epilepsy by 1.8 to 2.4 years. An earlier age at menarche in IQSEC2 female patients was reported. Sleep disturbance was highly prevalent (60 to 77.8%), with mandatory co-sleeping behavior (50% of the female patients) being related to de novo variant origin, younger age, taller height with underweight, better social interaction, and lower life quality impact for the family and friends area. In conclusion, the IQSEC2 encephalopathy is a rare and likely underdiagnosed developmental encephalopathy leading to an adverse life quality impact.

8.
Genes (Basel) ; 14(8)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37628684

RESUMO

The membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) protein is an acyltransferase catalyzing arachidonic acid incorporation into lysophosphatidylinositol. Patients with rare, biallelic loss-of-function variants of the MBOAT7 gene display intellectual disability with neurodevelopmental defects. The rs641738 inherited variant associated with reduced hepatic MBOAT7 expression has been linked to steatotic liver disease susceptibility. However, the impact of biallelic loss-of-function MBOAT7 variants on liver disease is not known. We report on a 2-year-old girl with MBOAT7-related intellectual disability and steatotic liver disease, confirming that MBOAT7 loss-of-function predisposes to liver disease.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Pré-Escolar , Deficiência Intelectual/genética , Pacientes , Aciltransferases/genética , Ácido Araquidônico , Proteínas de Membrana
9.
Cell Rep Med ; 4(9): 101152, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37572667

RESUMO

Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.


Assuntos
Aromatase , COVID-19 , Feminino , Humanos , Masculino , Aromatase/genética , Letrozol , SARS-CoV-2 , COVID-19/genética , Estradiol , Testosterona
10.
Respir Res ; 24(1): 158, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328761

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized. METHODS: A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases. RESULTS: Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis. CONCLUSION: RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk. Trial Registration NCT04549831 ( www. CLINICALTRIAL: org ).


Assuntos
COVID-19 , DNA Helicases , Síndrome Pós-COVID-19 Aguda , Fibrose Pulmonar , Humanos , COVID-19/diagnóstico , COVID-19/genética , DNA Helicases/genética , Pulmão , Síndrome Pós-COVID-19 Aguda/genética , Fibrose Pulmonar/diagnóstico , Fibrose Pulmonar/genética , SARS-CoV-2
13.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552859

RESUMO

Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19.


Assuntos
COVID-19 , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Alelos , Fibrose Cística/patologia , COVID-19/genética , Heterozigoto
14.
Commun Biol ; 5(1): 1133, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289370

RESUMO

We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Sequenciamento do Exoma , Fenótipo
15.
Science ; 377(6604): eabm3125, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35737812

RESUMO

Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.


Assuntos
COVID-19 , Interações Hospedeiro-Patógeno , SARS-CoV-2 , Ácidos Siálicos , Glicoproteína da Espícula de Coronavírus , COVID-19/transmissão , Microscopia Crioeletrônica , Variação Genética , Humanos , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/genética , Ácidos Siálicos/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
16.
Viruses ; 14(6)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35746657

RESUMO

Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage.


Assuntos
COVID-19 , Púrpura Trombocitopênica Trombótica , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS13/genética , COVID-19/genética , Humanos , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/genética , SARS-CoV-2/patogenicidade , Fator de von Willebrand/química , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
18.
Autophagy ; 18(7): 1662-1672, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34964709

RESUMO

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways.Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor.


Assuntos
COVID-19 , Receptor 3 Toll-Like , Autofagia/genética , Biomarcadores , COVID-19/genética , Células HEK293 , Humanos , Hidroxicloroquina/uso terapêutico , Masculino , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética , Índice de Gravidade de Doença , Receptor 3 Toll-Like/genética
19.
Genes Immun ; 23(1): 51-56, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952932

RESUMO

Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.


Assuntos
COVID-19 , Receptor 7 Toll-Like , Citocinas/metabolismo , Regulação para Baixo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , SARS-CoV-2 , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo
20.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34889978

RESUMO

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Fenótipo , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Alemanha , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Quebeque , SARS-CoV-2 , Suécia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...